Senin, 27 Januari 2014

Sekitar Tentang tumbukan fisika



Momentum , implus dan tumbukan fisika

Momentum, Impuls, dan Tumbukan Fisika – Momentum dapat didefinisikan sebagai perkalian antara massa benda dengan kecepatan benda tersebut. Ia merupakan besaran turunan dari massa, panjang, dan waktu. Momentum adalah besaran turunan yang muncul karena ada benda bermassa yang bergerak. Dalam fisika besaran turunan ini dilambangkan dengan huruf “P”. Berikut rumus momentum
P = m V
P = momentum (kg.m.s-1)
m = massa benda (kg)
V = kecepatan benda (m.s-1)
Dari rumus momentum di atas dapat disimpulkan momentum suatu benda akan semakin besar jika massa dan kecepatannya semakin bear. Ini juga berlaku sebaliknya, semakin kecil massa atau kecepatan suatu benda maka akan semakin kecil pula momentumnya. Ilmu fisika mengenal yang namanya hukum kekalan momentum yang berbunyi
“Momentum sebelum dan sesudah tumbukan akan selalu sama”
Misalkan ada dua benda yang memiliki kecepatan dan massa masing-masing bertumbukan dan setelah tumbukan masing-masing benda  mempunyai kecepatan yang berbeda maka menurut hukum kekekalan momentum
m1V1 +m2V2 = m1V1‘ + m2V2
Contoh Soal Momentum
Misalkan sobat hitung yang gemuk dengan berat badan 110 kg berlari dengan kecepatan tetap 72 km/jam. Berapa momentum dari sobat hitung tersebut?
P = m.v
Kecepatan harus dalam m/s, 72 km/ jam = 72000/3600 = 20 m/s
P = 110 x 20 = 2.220 kg m/s

Impuls

Perhatikann sobat, ketika bola kalian tendang pasti terjadi kontak kaki dengan bola, saat itu pula gaya dari kaki akan bekerja pada bola dalam tempo atau waktu yang sangat singkat. Waktunya hanya sepersekian sekon, selama terjadi kontak kaki sobat dengan bola. Bekerjanya gaya tersebut terhadap bola dalam waktu yang sangat singkat itulah yang disebut impuls. Lebih sederhananya, impuls adalah perkalian gaya (F) dengan selang waktu (t). Impuls bekerja di awal sehingga membuat sebuah benda bergerak dan mempunyai momentum. Secara matematis impuls dapat dirumuskan
I = F Δt
I = impuls (Nt)
F = gaya (N)
t = waktu (s)
Contoh Soal
Lionel messi mengambil tendangan bebas tepat di garis area pinalti lawan. Jika ia menendang dengan gaya 300 N dan kakinya bersentuhan dengan bola dalam waktu 0,15 sekon. Hitunglah berapa besar impuls yang terjadi
I = F.Δ t
I = 300. 0,15 = 45 Nt

Apa Hubungan Impul dengan Momentum?

Salah satu hukum newton mengatakan bahwa gaya yang bekerja pada suatu benda sama dengan perkalian massa dengan percepatannya.
F = m.a.
Jika kita masukkan ke rumus I = F. Δt
I = F. Δt
I = m.a (t2-t1)
I = m v/t (t2-t1)
I = m.v1 – mv2
Jadi dapat disimupulkan bahawa”Besarnya impuls yang bekerja/dikerjakan pada suatu benda sama dengan besarnya perubahan momentum pada benda tersebut.”

D. Tumbukan


Tumbukan dapat berlangsung secara singkat dan dapat pula berlangsung lama. Pada semua proses tumbukan, benda-benda yang saling bertumbukan akan berinteraksi dengan kuat hanya selama tumbukan berlangsung  kalaupun ada gaya eksternal yang bekerja, besarnya akan jauh lebih kecil daripada gaya interaksi yang terjadi, dan oleh karenanya gaya tersebut diabaikan.
Jika energi kinetik total benda-benda setelah tumbukan sama dengan energi kinetik total benda-benda sebelum tumbukan, tumbukannya disebut tumbukan elastik sempurna . sebaliknya jika energi kinetik total kedua benda setelah tumbukan tidak sama dengan energi kinetik total kedua benda sebelum tumbukan , tumbukannya disebut tumbukan tak elastik atau tumbukan tak lenting.
Selanjutnya disini akan dijelaskan lebih lanjut;
1. Tumbukan lenting sempurna pada satu dimensi
Ingat ! jika pada tumbukan tidak terjadi kehilangan energi kinetik, maka tumbukan yang terjadi bersifat lenting sempurna. Disini akan dibahas tumbukan satu dimensi dimana kecepatan benda yang bertumbukan terletak segaris. Misalnya sepanjang sumbu-x seperti pada gambar 6 berikut;

Gambar 6. Ilustrasi 2 Bola Sebelum dan Sesudah Tumbukan
Berdasarkan Hukum Kekalan Momentum diperoleh;
atau
oleh karena tumbukan yang terjadi adalah lenting sempurna, energi kinetiknya tetap, yaitu:
atau
Dengan mengingat, 
maka persamaan ketika terjadi tumbukan lenting sempurna dapat dituliskan sebagai berikut
jika persamaan tersebut dibagi dengan persamaan;
maka diperoleh persamaan sebagai berikut:
2. Tumbukan lenting sempurna pada bidang
Tumbukan ini terjadi pada bidang dua dimensi yang tidak segaris, melainkan sebidang (dua dimensi). Contoh tumbukan semacam ini adalah tumbukan yang terjadi pada dua bola billiar atau tumbukan yang terjadi pada tumbukan dua mobil yang sejenis dan melaju dengan kecepatan yang sama seperti pada gambar 7. ;

Gambar 7. Ilustrasi 2 Bola Bertumbukan Pada Bidang
Dengan menerapkan hukum kekekalan momentum pada arah sumbu x, diperoleh
karena pada awalnya kedua benda tidak bergerak pada arah y, maka komponen momentum dari arah y bernilai nol;
Pada tumbukan lenting sempurna, harga koefisien restitusi adalah sebagai berikut:
3. Tumbukan tidak lenting
Dalam tumbukan ini, setelah tumbukan kedua benda akan bergerak bersama seperti pada gambar 8.

Gambar 8. Ilustrasi Tumbukan Tidak Lenting
sehingga berlaku Dengan demikian, Hukum kekekalan momentumnya berbentuk:
Dengan demikian, kecepatan kedua benda setelah tumbukan dapat dihitung dengan rumus:
Jika salah satu benda misalnya m2 semula diam, maka persamaanya menjadi:
Jadi, dengan hanya mengukur massa dan kecepatan sebelum tumbukan, kecepatan benda setelah tumbukan dapat diperhitungkan. Dalam tumbukan tidak lenting, energi kinetik setelah tumbukan selalu lebih kecil daripada energi kinetik sebelum tumbukan.
Rumus energi kinetik sebelum tumbukan adalah
Rumus energi kinetik setelah tumbukan adalah
Perbandingan enrgi kinetik setelah tumbukan dengan energi kinetik  sebelum tumbukan adalah
catatan: persamaan tersebut berlaku jika semula massa m2 diam.
Pada tumbukan tidak lenting, harga koefisien restitusi adalah sebagai berikut:
4. Tumbukan lenting sebagian
Sebagian besar tumbukan yang terjadi antara dua benda adalah tumbukan lenting sebagian. Misalnya, bola tenis yang bertumbukan dengan raket atau bola baseball yang dipukul. Analisis tumbukan tidak lenting sebagian melibatkan koefisien restitusi (e) .
koefisien restitusi didefinisikan sebagai harga negatif dari perbandingan antara besar kecepatan relatif  kedua benda setelah tumbukan dan sebelum tumbukan.


Selamat Belajar, cuman sekedar info

Add: Greatoscar
Follow : @oscarrahmadana2

1 komentar:

  1. Sekitar Tentang Tumbukan Fisika ~ All In One In Here >>>>> Download Now

    >>>>> Download Full

    Sekitar Tentang Tumbukan Fisika ~ All In One In Here >>>>> Download LINK

    >>>>> Download Now

    Sekitar Tentang Tumbukan Fisika ~ All In One In Here >>>>> Download Full

    >>>>> Download LINK

    BalasHapus